Novae model
novae.Novae
Bases: LightningModule
, PyTorchModelHubMixin
Novae model class. It can be used to load a pretrained model or train a new one.
Example usage
Source code in novae/model.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
|
__init__(adata=None, embedding_size=100, min_prototypes_ratio=0.6, n_hops_local=2, n_hops_view=2, temperature=0.1, output_size=64, heads=4, hidden_size=64, num_layers=10, batch_size=256, num_prototypes=256, panel_subset_size=0.6, background_noise_lambda=8.0, sensitivity_noise_std=0.05, scgpt_model_dir=None, var_names=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData | list[AnnData] | None
|
An |
None
|
embedding_size
|
int
|
Size of the embeddings of the genes ( |
100
|
min_prototypes_ratio
|
float
|
Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes. |
0.6
|
n_hops_local
|
int
|
Number of hops between a cell and its neighborhood cells. |
2
|
n_hops_view
|
int
|
Number of hops between a cell and the origin of a second graph (or 'view'). |
2
|
temperature
|
float
|
Temperature used in the cross-entropy loss. |
0.1
|
output_size
|
int
|
Size of the representations, i.e. the encoder outputs ( |
64
|
heads
|
int
|
Number of heads for the graph encoder. |
4
|
hidden_size
|
int
|
Hidden size for the graph encoder. |
64
|
num_layers
|
int
|
Number of layers for the graph encoder. |
10
|
batch_size
|
int
|
Mini-batch size. |
256
|
num_prototypes
|
int
|
Number of prototypes ( |
256
|
panel_subset_size
|
float
|
Ratio of genes kept from the panel during augmentation. |
0.6
|
background_noise_lambda
|
float
|
Parameter of the exponential distribution for the noise augmentation. |
8.0
|
sensitivity_noise_std
|
float
|
Standard deviation for the multiplicative for for the noise augmentation. |
0.05
|
scgpt_model_dir
|
str | None
|
Path to a directory containing a scGPT checkpoint, i.e. a |
None
|
var_names
|
list[str] | None
|
Only used when loading a pretrained model. Do not use it yourself. |
None
|
Source code in novae/model.py
assign_domains(adata=None, level=7, n_domains=None, key_added=None)
Assign a domain to each cell based on the "leaves" classes.
Note
You'll need to run novae.Novae.compute_representations first.
The domains are saved in adata.obs["novae_domains_X]
, where X
is the level
argument.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData | list[AnnData] | None
|
An |
None
|
level
|
int
|
Level of the domains hierarchical tree (i.e., number of different domains to assigned). |
7
|
n_domains
|
int | None
|
If |
None
|
key_added
|
str | None
|
The spatial domains will be saved in |
None
|
Returns:
Type | Description |
---|---|
str
|
The name of the key added to |
Source code in novae/model.py
batch_effect_correction(adata=None, obs_key=None)
Correct batch effects from the spatial representations of cells.
Info
The corrected spatial representations will be saved in adata.obsm["novae_latent_corrected"]
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData | list[AnnData] | None
|
An |
None
|
obs_key
|
str | None
|
Optional key in |
None
|
Source code in novae/model.py
compute_representations(adata=None, *, zero_shot=False, accelerator='cpu', num_workers=None)
Compute the latent representation of Novae for all cells neighborhoods.
Note
Representations are saved in adata.obsm["novae_latent"]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData | list[AnnData] | None
|
An |
None
|
accelerator
|
str
|
Accelerator to use. For instance, |
'cpu'
|
num_workers
|
int | None
|
Number of workers for the dataloader. |
None
|
Source code in novae/model.py
fine_tune(adata, *, accelerator='cpu', num_workers=None, min_prototypes_ratio=0.6, lr=0.001, max_epochs=4, **fit_kwargs)
Fine tune a pretrained Novae model. This will update the prototypes with the new data, and fit
for one or a few epochs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData | list[AnnData]
|
An |
required |
accelerator
|
str
|
Accelerator to use. For instance, |
'cpu'
|
num_workers
|
int | None
|
Number of workers for the dataloader. |
None
|
min_prototypes_ratio
|
float
|
Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes. |
0.6
|
lr
|
float
|
Model learning rate. |
0.001
|
max_epochs
|
int
|
Maximum number of training epochs. |
4
|
**fit_kwargs
|
int
|
Optional kwargs for the novae.Novae.fit method. |
{}
|
Source code in novae/model.py
fit(adata=None, max_epochs=20, accelerator='cpu', num_workers=None, lr=0.001, min_delta=0.1, patience=3, callbacks=None, logger=False, **trainer_kwargs)
Train a Novae model. The training will be stopped by early stopping.
Warn
If you loaded a pretrained model, use novae.Novae.fine_tune instead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData | list[AnnData] | None
|
An |
None
|
max_epochs
|
int
|
Maximum number of training epochs. |
20
|
accelerator
|
str
|
Accelerator to use. For instance, |
'cpu'
|
num_workers
|
int | None
|
Number of workers for the dataloader. |
None
|
lr
|
float
|
Model learning rate. |
0.001
|
min_delta
|
float
|
Minimum change in the monitored quantity to qualify as an improvement (early stopping). |
0.1
|
patience
|
int
|
Number of epochs with no improvement after which training will be stopped (early stopping). |
3
|
callbacks
|
list[Callback] | None
|
Optional list of Pytorch lightning callbacks. |
None
|
logger
|
Logger | list[Logger] | bool
|
The pytorch lightning logger. |
False
|
**trainer_kwargs
|
int
|
Optional kwargs for the Pytorch Lightning |
{}
|
Source code in novae/model.py
from_pretrained(model_name_or_path, **kwargs)
classmethod
Load a pretrained Novae
model from HuggingFace Hub.
Available model names
See here the available Novae model names.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name_or_path
|
str
|
Name of the model, e.g. |
required |
**kwargs
|
int
|
Optional kwargs for Hugging Face |
{}
|
Returns:
Type | Description |
---|---|
Novae
|
A pretrained |
Source code in novae/model.py
init_slide_queue(adata, min_prototypes_ratio)
Initialize the slide-queue for the SwAV head.
This can be used before training (fit
or fine_tune
) when there are potentially slide-specific or condition-specific prototypes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData | list[AnnData] | None
|
An |
required |
min_prototypes_ratio
|
float
|
Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes. |
required |
Source code in novae/model.py
plot_domains_hierarchy(max_level=10, hline_level=None, leaf_font_size=8, **kwargs)
Plot the domains hierarchy as a dendogram.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_level
|
int
|
Maximum level to be plot. |
10
|
hline_level
|
int | list[int] | None
|
If not |
None
|
leaf_font_size
|
int
|
The font size for the leaf labels. |
8
|
Source code in novae/model.py
plot_prototype_weights(**kwargs)
Plot the weights of the prototypes per slide.
Source code in novae/model.py
save_pretrained(save_directory, *, repo_id=None, push_to_hub=False, **kwargs)
Save a pretrained Novae
model to a directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
save_directory
|
str
|
Path to the directory where the model will be saved. |
required |
**kwargs
|
int
|
Do not use. These are used to push a new model on HuggingFace Hub. |
{}
|