Skip to content

Novae model

novae.Novae

Bases: LightningModule, PyTorchModelHubMixin

Novae model class. It can be used to load a pretrained model or train a new one.

Example usage

import novae

model = novae.Novae.from_pretrained("MICS-Lab/novae-human-0")

model.compute_representations(adata, zero_shot=True)
model.assign_domains(adata)
Source code in novae/model.py
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
class Novae(L.LightningModule, PyTorchModelHubMixin):
    """Novae model class. It can be used to load a pretrained model or train a new one.

    !!! note "Example usage"
        ```python
        import novae

        model = novae.Novae.from_pretrained("MICS-Lab/novae-human-0")

        model.compute_representations(adata, zero_shot=True)
        model.assign_domains(adata)
        ```
    """

    def __init__(
        self,
        adata: AnnData | list[AnnData] | None = None,
        embedding_size: int = 100,
        min_prototypes_ratio: float = 0.6,
        n_hops_local: int = 2,
        n_hops_view: int = 2,
        temperature: float = 0.1,
        output_size: int = 64,
        heads: int = 4,
        hidden_size: int = 64,
        num_layers: int = 10,
        batch_size: int = 256,
        num_prototypes: int = 256,
        panel_subset_size: float = 0.6,
        background_noise_lambda: float = 8.0,
        sensitivity_noise_std: float = 0.05,
        scgpt_model_dir: str | None = None,
        var_names: list[str] | None = None,
    ) -> None:
        """

        Args:
            adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
            embedding_size: Size of the embeddings of the genes (`E` in the article). Do not use it when loading embeddings from scGPT.
            min_prototypes_ratio: Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.
            n_hops_local: Number of hops between a cell and its neighborhood cells.
            n_hops_view: Number of hops between a cell and the origin of a second graph (or 'view').
            temperature: Temperature used in the cross-entropy loss.
            output_size: Size of the representations, i.e. the encoder outputs (`O` in the article).
            heads: Number of heads for the graph encoder.
            hidden_size: Hidden size for the graph encoder.
            num_layers: Number of layers for the graph encoder.
            batch_size: Mini-batch size.
            num_prototypes: Number of prototypes (`K` in the article).
            panel_subset_size: Ratio of genes kept from the panel during augmentation.
            background_noise_lambda: Parameter of the exponential distribution for the noise augmentation.
            sensitivity_noise_std: Standard deviation for the multiplicative for for the noise augmentation.
            scgpt_model_dir: Path to a directory containing a scGPT checkpoint, i.e. a `vocab.json` and a `best_model.pt` file.
            var_names: Only used when loading a pretrained model. Do not use it yourself.
        """
        super().__init__()
        ### Initialize cell embedder and prepare adata(s) object(s)
        if scgpt_model_dir is None:
            self.adatas, var_names = utils.prepare_adatas(adata, var_names=var_names)
            self.cell_embedder = CellEmbedder(var_names, embedding_size)
            self.cell_embedder.pca_init(self.adatas)
        else:
            self.cell_embedder = CellEmbedder.from_scgpt_embedding(scgpt_model_dir)
            embedding_size = self.cell_embedder.embedding_size
            _scgpt_var_names = self.cell_embedder.gene_names
            self.adatas, var_names = utils.prepare_adatas(adata, var_names=_scgpt_var_names)

        self.save_hyperparameters(ignore=["adata", "scgpt_model_dir"])
        self.mode = utils.Mode()

        ### Initialize modules
        self.encoder = GraphEncoder(embedding_size, hidden_size, num_layers, output_size, heads)
        self.augmentation = GraphAugmentation(panel_subset_size, background_noise_lambda, sensitivity_noise_std)
        self.swav_head = SwavHead(self.mode, output_size, num_prototypes, temperature)

        ### Misc
        self._num_workers = 0
        self._model_name = None
        self._datamodule = None
        self.init_slide_queue(self.adatas, min_prototypes_ratio)

    def init_slide_queue(self, adata: AnnData | list[AnnData] | None, min_prototypes_ratio: float) -> None:
        """
        Initialize the slide-queue for the SwAV head.
        This can be used before training (`fit` or `fine_tune`) when there are potentially slide-specific or condition-specific prototypes.

        Args:
            adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
            min_prototypes_ratio: Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.
        """
        self.hparams.min_prototypes_ratio = min_prototypes_ratio

        if adata is None or min_prototypes_ratio == 1:
            return

        slide_ids = list(utils.unique_obs(adata, Keys.SLIDE_ID))
        if len(slide_ids) > 1:
            self.swav_head.set_min_prototypes(min_prototypes_ratio)
            self.swav_head.init_queue(slide_ids)

    def __repr__(self) -> str:
        info_dict = {
            "Known genes": self.cell_embedder.voc_size,
            "Parameters": utils.pretty_num_parameters(self),
            "Model name": self._model_name,
        }
        return utils.pretty_model_repr(info_dict)

    def __new__(cls, *args, **kwargs) -> "Novae":
        # trick to enable auto-completion despite PyTorchModelHubMixin inheritance
        return super().__new__(cls, *args, **kwargs)

    @property
    def datamodule(self) -> NovaeDatamodule:
        assert (
            self._datamodule is not None
        ), "The datamodule was not initialized. You first need to fit the model, i.e. `model.fit(...)`"
        return self._datamodule

    @property
    def dataset(self) -> NovaeDataset:
        return self.datamodule.dataset

    @property
    def num_workers(self) -> int:
        return self._num_workers

    @num_workers.setter
    def num_workers(self, value: int) -> None:
        self._num_workers = value
        if self._datamodule is not None:
            self._datamodule.num_workers = value

    def _to_anndata_list(self, adata: AnnData | list[AnnData] | None) -> list[AnnData]:
        if adata is None:
            assert self.adatas is not None, "No AnnData object found. Please provide an AnnData object."
            return self.adatas
        elif isinstance(adata, AnnData):
            return [adata]
        elif isinstance(adata, list):
            return adata
        else:
            raise ValueError(f"Invalid type for `adata`: {type(adata)}")

    def _prepare_adatas(self, adata: AnnData | list[AnnData] | None):
        if adata is None:
            return self.adatas
        return utils.prepare_adatas(adata, var_names=self.cell_embedder.gene_names)[0]

    def _init_datamodule(
        self, adata: AnnData | list[AnnData] | None = None, sample_cells: int | None = None, **kwargs: int
    ):
        return NovaeDatamodule(
            self._to_anndata_list(adata),
            cell_embedder=self.cell_embedder,
            batch_size=self.hparams.batch_size,
            n_hops_local=self.hparams.n_hops_local,
            n_hops_view=self.hparams.n_hops_view,
            num_workers=self._num_workers,
            sample_cells=sample_cells,
            **kwargs,
        )

    def configure_optimizers(self):
        lr = self._lr if hasattr(self, "_lr") else 1e-3
        return optim.Adam(self.parameters(), lr=lr)

    def _parse_hardware_args(self, accelerator: str, num_workers: int | None, use_device: bool = False) -> None:
        if accelerator == "cpu" and num_workers:
            log.warning(
                "On CPU, `num_workers != 0` can be very slow. Consider using a GPU, or setting `num_workers=0`."
            )

        if num_workers is not None:
            self.num_workers = num_workers

        if use_device:
            device = utils.parse_device_args(accelerator)
            self.to(device)

    def _embed_pyg_data(self, data: Batch) -> Batch:
        if settings.shuffle_nodes:
            utils.shuffle_nodes(data)
        if self.training:
            data = self.augmentation(data)
        return self.cell_embedder(data)

    def forward(self, batch: dict[str, Batch]) -> dict[str, Tensor]:
        return {key: self.encoder(self._embed_pyg_data(data)) for key, data in batch.items()}

    def training_step(self, batch: dict[str, Batch], batch_idx: int):
        z_dict: dict[str, Tensor] = self(batch)
        slide_id = batch["main"].get("slide_id", [None])[0]

        loss, mean_entropy_normalized = self.swav_head(z_dict["main"], z_dict["view"], slide_id)

        self._log_progress_bar("loss", loss)
        self._log_progress_bar("entropy", mean_entropy_normalized, on_epoch=False)

        return loss

    def on_train_epoch_start(self):
        self.training = True

        self.datamodule.dataset.shuffle_obs_ilocs()

        after_warm_up = self.current_epoch >= Nums.WARMUP_EPOCHS
        self.swav_head.prototypes.requires_grad_(after_warm_up or self.mode.pretrained)

    def _log_progress_bar(self, name: str, value: float, on_epoch: bool = True, **kwargs):
        self.log(
            f"train/{name}",
            value,
            on_epoch=on_epoch,
            on_step=True,
            batch_size=self.hparams.batch_size,
            prog_bar=True,
            **kwargs,
        )

    @classmethod
    def from_pretrained(self, model_name_or_path: str, **kwargs: int) -> "Novae":
        """Load a pretrained `Novae` model from HuggingFace Hub.

        !!! info "Available model names"
            See [here](https://huggingface.co/collections/MICS-Lab/novae-669cdf1754729d168a69f6bd) the available Novae model names.

        Args:
            model_name_or_path: Name of the model, e.g. `"MICS-Lab/novae-1-medium"`, or path to the local model.
            **kwargs: Optional kwargs for Hugging Face [`from_pretrained`](https://huggingface.co/docs/huggingface_hub/v0.24.0/en/package_reference/mixins#huggingface_hub.ModelHubMixin.from_pretrained) method.

        Returns:
            A pretrained `Novae` model.
        """
        model = super().from_pretrained(model_name_or_path, **kwargs)

        model.mode.from_pretrained()
        model._model_name = model_name_or_path
        model.cell_embedder.embedding.weight.requires_grad_(False)

        return model

    def save_pretrained(
        self,
        save_directory: str,
        *,
        repo_id: str | None = None,
        push_to_hub: bool = False,
        **kwargs: int,
    ):
        """Save a pretrained `Novae` model to a directory.

        Args:
            save_directory: Path to the directory where the model will be saved.
            **kwargs: Do not use. These are used to push a new model on HuggingFace Hub.
        """

        super().save_pretrained(
            save_directory,
            config=dict(self.hparams),
            repo_id=repo_id,
            push_to_hub=push_to_hub,
            **kwargs,
        )

    def on_save_checkpoint(self, checkpoint):
        checkpoint[Keys.NOVAE_VERSION] = __version__

    @classmethod
    def _load_wandb_artifact(cls, model_name: str, map_location: str = "cpu", **kwargs: int) -> "Novae":
        artifact_path = utils.load_wandb_artifact(model_name) / "model.ckpt"

        try:
            model = cls.load_from_checkpoint(artifact_path, map_location=map_location, strict=False, **kwargs)
        except:
            ckpt_version = torch.load(artifact_path, map_location=map_location).get(Keys.NOVAE_VERSION, "unknown")
            raise ValueError(f"The model was trained with `novae=={ckpt_version}`, but your version is {__version__}")

        model.mode.from_pretrained()
        model._model_name = model_name
        return model

    @torch.no_grad()
    def compute_representations(
        self,
        adata: AnnData | list[AnnData] | None = None,
        *,
        zero_shot: bool = False,
        accelerator: str = "cpu",
        num_workers: int | None = None,
    ) -> None:
        """Compute the latent representation of Novae for all cells neighborhoods.

        Note:
            Representations are saved in `adata.obsm["novae_latent"]`

        Args:
            adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
            accelerator: Accelerator to use. For instance, `'cuda'`, `'cpu'`, or `'auto'`. See Pytorch Lightning for more details.
            num_workers: Number of workers for the dataloader.
        """
        assert self.mode.trained, "Novae must be trained first, so consider running `model.fit()`"

        self.mode.zero_shot = zero_shot
        self.training = False
        self._parse_hardware_args(accelerator, num_workers, use_device=True)

        if adata is None and len(self.adatas) == 1:  # using existing datamodule
            adatas = self.adatas
            self._compute_representations_datamodule(self.adatas[0], self.datamodule)
        else:
            adatas = self._prepare_adatas(adata)
            for adata in adatas:
                datamodule = self._init_datamodule(adata)
                self._compute_representations_datamodule(adata, datamodule)

        if self.mode.zero_shot:
            latent = np.concatenate([adata.obsm[Keys.REPR][utils.valid_indices(adata)] for adata in adatas])
            self.swav_head.set_kmeans_prototypes(latent)
            self.swav_head.reset_clustering(only_zero_shot=True)

            for adata in adatas:
                self._compute_leaves(adata, None, None)

    @torch.no_grad()
    def _compute_representations_datamodule(
        self, adata: AnnData | None, datamodule: NovaeDatamodule, return_representations: bool = False
    ) -> Tensor | None:
        valid_indices = datamodule.dataset.valid_indices[0]
        representations, projections = [], []

        for batch in utils.tqdm(datamodule.predict_dataloader(), desc="Computing representations"):
            batch = self.transfer_batch_to_device(batch, self.device, dataloader_idx=0)
            batch_repr = self.encoder(self._embed_pyg_data(batch["main"]))

            representations.append(batch_repr)

            if not self.mode.zero_shot:
                batch_projections = self.swav_head.projection(batch_repr)
                projections.append(batch_projections)

        representations = torch.cat(representations)

        if return_representations:
            return representations

        adata.obsm[Keys.REPR] = utils.fill_invalid_indices(representations, adata.n_obs, valid_indices, fill_value=0)

        if not self.mode.zero_shot:
            projections = torch.cat(projections)
            self._compute_leaves(adata, projections, valid_indices)

    def _compute_leaves(self, adata: AnnData, projections: Tensor | None, valid_indices: np.ndarray | None):
        assert (projections is None) is (valid_indices is None)

        if projections is None:
            valid_indices = utils.valid_indices(adata)
            representations = torch.tensor(adata.obsm[Keys.REPR][valid_indices])
            projections = self.swav_head.projection(representations)

        leaves_predictions = projections.argmax(dim=1).numpy(force=True)
        leaves_predictions = utils.fill_invalid_indices(leaves_predictions, adata.n_obs, valid_indices)
        adata.obs[Keys.LEAVES] = [x if np.isnan(x) else f"D{int(x)}" for x in leaves_predictions]

    def plot_domains_hierarchy(
        self,
        max_level: int = 10,
        hline_level: int | list[int] | None = None,
        leaf_font_size: int = 8,
        **kwargs,
    ):
        """Plot the domains hierarchy as a dendogram.

        Args:
            max_level: Maximum level to be plot.
            hline_level: If not `None`, a red line will ne drawn at this/these level(s).
            leaf_font_size: The font size for the leaf labels.
        """
        plot._domains_hierarchy(
            self.swav_head.clustering,
            max_level=max_level,
            hline_level=hline_level,
            leaf_font_size=leaf_font_size,
            **kwargs,
        )

    def plot_prototype_weights(self, **kwargs: int):
        """Plot the weights of the prototypes per slide."""

        assert (
            self.swav_head.queue is not None
        ), "Swav queue not initialized. Initialize it with `model.init_slide_queue(...)`, then train or fine-tune the model."

        weights, thresholds = self.swav_head.queue_weights()
        weights, thresholds = weights.numpy(force=True), thresholds.numpy(force=True)

        where_enough_prototypes = (weights >= thresholds).sum(1) >= self.swav_head.min_prototypes
        for i in np.where(where_enough_prototypes)[0]:
            weights[i, weights[i] < thresholds] = 0
        for i in np.where(~where_enough_prototypes)[0]:
            indices_0 = np.argsort(weights[i])[: -self.swav_head.min_prototypes]
            weights[i, indices_0] = 0

        plot._weights_clustermap(weights, self.adatas, list(self.swav_head.slide_label_encoder.keys()), **kwargs)

    def plot_prototype_covariance(self, **kwargs):
        C = self.swav_head.prototypes.data.numpy(force=True)

        plot._weights_clustermap(C, None, [], show_yticklabels=False, show_tissue_legend=False, **kwargs)

    def assign_domains(
        self,
        adata: AnnData | list[AnnData] | None = None,
        level: int = 7,
        n_domains: int | None = None,
        key_added: str | None = None,
    ) -> str:
        """Assign a domain to each cell based on the "leaves" classes.

        Note:
            You'll need to run [novae.Novae.compute_representations][] first.

            The domains are saved in `adata.obs["novae_domains_X]`, where `X` is the `level` argument.

        Args:
            adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
            level: Level of the domains hierarchical tree (i.e., number of different domains to assigned).
            n_domains: If `level` is not providing the desired number of domains, use this argument to enforce a precise number of domains.
            key_added: The spatial domains will be saved in `adata.obs[key_added]`. By default, it is `adata.obs["novae_domains_X]`, where `X` is the `level` argument.

        Returns:
            The name of the key added to `adata.obs`.
        """
        adatas = self._to_anndata_list(adata)

        assert all(
            Keys.LEAVES in adata.obs for adata in adatas
        ), f"Did not found `adata.obs['{Keys.LEAVES}']`. Please run `model.compute_representations(...)` first"

        if n_domains is not None:
            leaves_indices = utils.unique_leaves_indices(adatas)
            level = self.swav_head.find_level(leaves_indices, n_domains)
            return self.assign_domains(adatas, level=level, key_added=key_added)

        key_added = f"{Keys.DOMAINS_PREFIX}{level}" if key_added is None else key_added

        for adata in adatas:
            adata.obs[key_added] = self.swav_head.map_leaves_domains(adata.obs[Keys.LEAVES], level)
            adata.obs[key_added] = adata.obs[key_added].astype("category")

        return key_added

    def batch_effect_correction(self, adata: AnnData | list[AnnData] | None = None, obs_key: str | None = None):
        """Correct batch effects from the spatial representations of cells.

        !!! info
            The corrected spatial representations will be saved in `adata.obsm["novae_latent_corrected"]`.

        Args:
            adata: An `AnnData` object, or a list of `AnnData` objects.
            obs_key: Optional key in `adata.obs` containing the domains to use for batch correction. If not provided, the key will be automatically selected.
        """
        adatas = self._to_anndata_list(adata)
        obs_key = utils.check_available_domains_key(adatas, obs_key)

        utils.batch_effect_correction(adatas, obs_key)

    def fine_tune(
        self,
        adata: AnnData | list[AnnData],
        *,
        accelerator: str = "cpu",
        num_workers: int | None = None,
        min_prototypes_ratio: float = 0.6,
        lr: float = 1e-3,
        max_epochs: int = 4,
        **fit_kwargs: int,
    ):
        """Fine tune a pretrained Novae model. This will update the prototypes with the new data, and `fit` for one or a few epochs.

        Args:
            adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
            accelerator: Accelerator to use. For instance, `'cuda'`, `'cpu'`, or `'auto'`. See Pytorch Lightning for more details.
            num_workers: Number of workers for the dataloader.
            min_prototypes_ratio: Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.
            lr: Model learning rate.
            max_epochs: Maximum number of training epochs.
            **fit_kwargs: Optional kwargs for the [novae.Novae.fit][] method.
        """
        self.mode.fine_tune()
        self._parse_hardware_args(accelerator, num_workers, use_device=True)

        assert adata is not None, "Please provide an AnnData object to fine-tune the model."

        datamodule = self._init_datamodule(self._prepare_adatas(adata), sample_cells=Nums.DEFAULT_SAMPLE_CELLS)
        self.init_slide_queue(adata, min_prototypes_ratio)

        latent = self._compute_representations_datamodule(None, datamodule, return_representations=True)
        self.swav_head.set_kmeans_prototypes(latent.numpy(force=True))

        self.swav_head._prototypes = self.swav_head._kmeans_prototypes
        del self.swav_head._kmeans_prototypes

        self.fit(
            adata=adata,
            max_epochs=max_epochs,
            accelerator=accelerator,
            num_workers=num_workers,
            lr=lr,
            **fit_kwargs,
        )

    def fit(
        self,
        adata: AnnData | list[AnnData] | None = None,
        max_epochs: int = 20,
        accelerator: str = "cpu",
        num_workers: int | None = None,
        lr: float = 1e-3,
        min_delta: float = 0.1,
        patience: int = 3,
        callbacks: list[Callback] | None = None,
        logger: Logger | list[Logger] | bool = False,
        **trainer_kwargs: int,
    ):
        """Train a Novae model. The training will be stopped by early stopping.

        !!! warn
            If you loaded a pretrained model, use [novae.Novae.fine_tune][] instead.

        Args:
            adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
            max_epochs: Maximum number of training epochs.
            accelerator: Accelerator to use. For instance, `'cuda'`, `'cpu'`, or `'auto'`. See Pytorch Lightning for more details.
            num_workers: Number of workers for the dataloader.
            lr: Model learning rate.
            min_delta: Minimum change in the monitored quantity to qualify as an improvement (early stopping).
            patience: Number of epochs with no improvement after which training will be stopped (early stopping).
            callbacks: Optional list of Pytorch lightning callbacks.
            logger: The pytorch lightning logger.
            **trainer_kwargs: Optional kwargs for the Pytorch Lightning `Trainer` class.
        """
        self.mode.fit()

        if adata is not None:
            self.adatas, _ = utils.prepare_adatas(adata, var_names=self.cell_embedder.gene_names)

        ### Misc
        self._lr = lr
        self.swav_head.reset_clustering()  # ensure we don't re-use old clusters
        self._parse_hardware_args(accelerator, num_workers)
        self._datamodule = self._init_datamodule()

        _train(
            self,
            self.datamodule,
            accelerator,
            max_epochs=max_epochs,
            patience=patience,
            min_delta=min_delta,
            callbacks=callbacks,
            logger=logger,
            **trainer_kwargs,
        )

        self.mode.trained = True

__init__(adata=None, embedding_size=100, min_prototypes_ratio=0.6, n_hops_local=2, n_hops_view=2, temperature=0.1, output_size=64, heads=4, hidden_size=64, num_layers=10, batch_size=256, num_prototypes=256, panel_subset_size=0.6, background_noise_lambda=8.0, sensitivity_noise_std=0.05, scgpt_model_dir=None, var_names=None)

Parameters:

Name Type Description Default
adata AnnData | list[AnnData] | None

An AnnData object, or a list of AnnData objects. Optional if the model was initialized with adata.

None
embedding_size int

Size of the embeddings of the genes (E in the article). Do not use it when loading embeddings from scGPT.

100
min_prototypes_ratio float

Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.

0.6
n_hops_local int

Number of hops between a cell and its neighborhood cells.

2
n_hops_view int

Number of hops between a cell and the origin of a second graph (or 'view').

2
temperature float

Temperature used in the cross-entropy loss.

0.1
output_size int

Size of the representations, i.e. the encoder outputs (O in the article).

64
heads int

Number of heads for the graph encoder.

4
hidden_size int

Hidden size for the graph encoder.

64
num_layers int

Number of layers for the graph encoder.

10
batch_size int

Mini-batch size.

256
num_prototypes int

Number of prototypes (K in the article).

256
panel_subset_size float

Ratio of genes kept from the panel during augmentation.

0.6
background_noise_lambda float

Parameter of the exponential distribution for the noise augmentation.

8.0
sensitivity_noise_std float

Standard deviation for the multiplicative for for the noise augmentation.

0.05
scgpt_model_dir str | None

Path to a directory containing a scGPT checkpoint, i.e. a vocab.json and a best_model.pt file.

None
var_names list[str] | None

Only used when loading a pretrained model. Do not use it yourself.

None
Source code in novae/model.py
def __init__(
    self,
    adata: AnnData | list[AnnData] | None = None,
    embedding_size: int = 100,
    min_prototypes_ratio: float = 0.6,
    n_hops_local: int = 2,
    n_hops_view: int = 2,
    temperature: float = 0.1,
    output_size: int = 64,
    heads: int = 4,
    hidden_size: int = 64,
    num_layers: int = 10,
    batch_size: int = 256,
    num_prototypes: int = 256,
    panel_subset_size: float = 0.6,
    background_noise_lambda: float = 8.0,
    sensitivity_noise_std: float = 0.05,
    scgpt_model_dir: str | None = None,
    var_names: list[str] | None = None,
) -> None:
    """

    Args:
        adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
        embedding_size: Size of the embeddings of the genes (`E` in the article). Do not use it when loading embeddings from scGPT.
        min_prototypes_ratio: Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.
        n_hops_local: Number of hops between a cell and its neighborhood cells.
        n_hops_view: Number of hops between a cell and the origin of a second graph (or 'view').
        temperature: Temperature used in the cross-entropy loss.
        output_size: Size of the representations, i.e. the encoder outputs (`O` in the article).
        heads: Number of heads for the graph encoder.
        hidden_size: Hidden size for the graph encoder.
        num_layers: Number of layers for the graph encoder.
        batch_size: Mini-batch size.
        num_prototypes: Number of prototypes (`K` in the article).
        panel_subset_size: Ratio of genes kept from the panel during augmentation.
        background_noise_lambda: Parameter of the exponential distribution for the noise augmentation.
        sensitivity_noise_std: Standard deviation for the multiplicative for for the noise augmentation.
        scgpt_model_dir: Path to a directory containing a scGPT checkpoint, i.e. a `vocab.json` and a `best_model.pt` file.
        var_names: Only used when loading a pretrained model. Do not use it yourself.
    """
    super().__init__()
    ### Initialize cell embedder and prepare adata(s) object(s)
    if scgpt_model_dir is None:
        self.adatas, var_names = utils.prepare_adatas(adata, var_names=var_names)
        self.cell_embedder = CellEmbedder(var_names, embedding_size)
        self.cell_embedder.pca_init(self.adatas)
    else:
        self.cell_embedder = CellEmbedder.from_scgpt_embedding(scgpt_model_dir)
        embedding_size = self.cell_embedder.embedding_size
        _scgpt_var_names = self.cell_embedder.gene_names
        self.adatas, var_names = utils.prepare_adatas(adata, var_names=_scgpt_var_names)

    self.save_hyperparameters(ignore=["adata", "scgpt_model_dir"])
    self.mode = utils.Mode()

    ### Initialize modules
    self.encoder = GraphEncoder(embedding_size, hidden_size, num_layers, output_size, heads)
    self.augmentation = GraphAugmentation(panel_subset_size, background_noise_lambda, sensitivity_noise_std)
    self.swav_head = SwavHead(self.mode, output_size, num_prototypes, temperature)

    ### Misc
    self._num_workers = 0
    self._model_name = None
    self._datamodule = None
    self.init_slide_queue(self.adatas, min_prototypes_ratio)

assign_domains(adata=None, level=7, n_domains=None, key_added=None)

Assign a domain to each cell based on the "leaves" classes.

Note

You'll need to run novae.Novae.compute_representations first.

The domains are saved in adata.obs["novae_domains_X], where X is the level argument.

Parameters:

Name Type Description Default
adata AnnData | list[AnnData] | None

An AnnData object, or a list of AnnData objects. Optional if the model was initialized with adata.

None
level int

Level of the domains hierarchical tree (i.e., number of different domains to assigned).

7
n_domains int | None

If level is not providing the desired number of domains, use this argument to enforce a precise number of domains.

None
key_added str | None

The spatial domains will be saved in adata.obs[key_added]. By default, it is adata.obs["novae_domains_X], where X is the level argument.

None

Returns:

Type Description
str

The name of the key added to adata.obs.

Source code in novae/model.py
def assign_domains(
    self,
    adata: AnnData | list[AnnData] | None = None,
    level: int = 7,
    n_domains: int | None = None,
    key_added: str | None = None,
) -> str:
    """Assign a domain to each cell based on the "leaves" classes.

    Note:
        You'll need to run [novae.Novae.compute_representations][] first.

        The domains are saved in `adata.obs["novae_domains_X]`, where `X` is the `level` argument.

    Args:
        adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
        level: Level of the domains hierarchical tree (i.e., number of different domains to assigned).
        n_domains: If `level` is not providing the desired number of domains, use this argument to enforce a precise number of domains.
        key_added: The spatial domains will be saved in `adata.obs[key_added]`. By default, it is `adata.obs["novae_domains_X]`, where `X` is the `level` argument.

    Returns:
        The name of the key added to `adata.obs`.
    """
    adatas = self._to_anndata_list(adata)

    assert all(
        Keys.LEAVES in adata.obs for adata in adatas
    ), f"Did not found `adata.obs['{Keys.LEAVES}']`. Please run `model.compute_representations(...)` first"

    if n_domains is not None:
        leaves_indices = utils.unique_leaves_indices(adatas)
        level = self.swav_head.find_level(leaves_indices, n_domains)
        return self.assign_domains(adatas, level=level, key_added=key_added)

    key_added = f"{Keys.DOMAINS_PREFIX}{level}" if key_added is None else key_added

    for adata in adatas:
        adata.obs[key_added] = self.swav_head.map_leaves_domains(adata.obs[Keys.LEAVES], level)
        adata.obs[key_added] = adata.obs[key_added].astype("category")

    return key_added

batch_effect_correction(adata=None, obs_key=None)

Correct batch effects from the spatial representations of cells.

Info

The corrected spatial representations will be saved in adata.obsm["novae_latent_corrected"].

Parameters:

Name Type Description Default
adata AnnData | list[AnnData] | None

An AnnData object, or a list of AnnData objects.

None
obs_key str | None

Optional key in adata.obs containing the domains to use for batch correction. If not provided, the key will be automatically selected.

None
Source code in novae/model.py
def batch_effect_correction(self, adata: AnnData | list[AnnData] | None = None, obs_key: str | None = None):
    """Correct batch effects from the spatial representations of cells.

    !!! info
        The corrected spatial representations will be saved in `adata.obsm["novae_latent_corrected"]`.

    Args:
        adata: An `AnnData` object, or a list of `AnnData` objects.
        obs_key: Optional key in `adata.obs` containing the domains to use for batch correction. If not provided, the key will be automatically selected.
    """
    adatas = self._to_anndata_list(adata)
    obs_key = utils.check_available_domains_key(adatas, obs_key)

    utils.batch_effect_correction(adatas, obs_key)

compute_representations(adata=None, *, zero_shot=False, accelerator='cpu', num_workers=None)

Compute the latent representation of Novae for all cells neighborhoods.

Note

Representations are saved in adata.obsm["novae_latent"]

Parameters:

Name Type Description Default
adata AnnData | list[AnnData] | None

An AnnData object, or a list of AnnData objects. Optional if the model was initialized with adata.

None
accelerator str

Accelerator to use. For instance, 'cuda', 'cpu', or 'auto'. See Pytorch Lightning for more details.

'cpu'
num_workers int | None

Number of workers for the dataloader.

None
Source code in novae/model.py
@torch.no_grad()
def compute_representations(
    self,
    adata: AnnData | list[AnnData] | None = None,
    *,
    zero_shot: bool = False,
    accelerator: str = "cpu",
    num_workers: int | None = None,
) -> None:
    """Compute the latent representation of Novae for all cells neighborhoods.

    Note:
        Representations are saved in `adata.obsm["novae_latent"]`

    Args:
        adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
        accelerator: Accelerator to use. For instance, `'cuda'`, `'cpu'`, or `'auto'`. See Pytorch Lightning for more details.
        num_workers: Number of workers for the dataloader.
    """
    assert self.mode.trained, "Novae must be trained first, so consider running `model.fit()`"

    self.mode.zero_shot = zero_shot
    self.training = False
    self._parse_hardware_args(accelerator, num_workers, use_device=True)

    if adata is None and len(self.adatas) == 1:  # using existing datamodule
        adatas = self.adatas
        self._compute_representations_datamodule(self.adatas[0], self.datamodule)
    else:
        adatas = self._prepare_adatas(adata)
        for adata in adatas:
            datamodule = self._init_datamodule(adata)
            self._compute_representations_datamodule(adata, datamodule)

    if self.mode.zero_shot:
        latent = np.concatenate([adata.obsm[Keys.REPR][utils.valid_indices(adata)] for adata in adatas])
        self.swav_head.set_kmeans_prototypes(latent)
        self.swav_head.reset_clustering(only_zero_shot=True)

        for adata in adatas:
            self._compute_leaves(adata, None, None)

fine_tune(adata, *, accelerator='cpu', num_workers=None, min_prototypes_ratio=0.6, lr=0.001, max_epochs=4, **fit_kwargs)

Fine tune a pretrained Novae model. This will update the prototypes with the new data, and fit for one or a few epochs.

Parameters:

Name Type Description Default
adata AnnData | list[AnnData]

An AnnData object, or a list of AnnData objects. Optional if the model was initialized with adata.

required
accelerator str

Accelerator to use. For instance, 'cuda', 'cpu', or 'auto'. See Pytorch Lightning for more details.

'cpu'
num_workers int | None

Number of workers for the dataloader.

None
min_prototypes_ratio float

Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.

0.6
lr float

Model learning rate.

0.001
max_epochs int

Maximum number of training epochs.

4
**fit_kwargs int

Optional kwargs for the novae.Novae.fit method.

{}
Source code in novae/model.py
def fine_tune(
    self,
    adata: AnnData | list[AnnData],
    *,
    accelerator: str = "cpu",
    num_workers: int | None = None,
    min_prototypes_ratio: float = 0.6,
    lr: float = 1e-3,
    max_epochs: int = 4,
    **fit_kwargs: int,
):
    """Fine tune a pretrained Novae model. This will update the prototypes with the new data, and `fit` for one or a few epochs.

    Args:
        adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
        accelerator: Accelerator to use. For instance, `'cuda'`, `'cpu'`, or `'auto'`. See Pytorch Lightning for more details.
        num_workers: Number of workers for the dataloader.
        min_prototypes_ratio: Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.
        lr: Model learning rate.
        max_epochs: Maximum number of training epochs.
        **fit_kwargs: Optional kwargs for the [novae.Novae.fit][] method.
    """
    self.mode.fine_tune()
    self._parse_hardware_args(accelerator, num_workers, use_device=True)

    assert adata is not None, "Please provide an AnnData object to fine-tune the model."

    datamodule = self._init_datamodule(self._prepare_adatas(adata), sample_cells=Nums.DEFAULT_SAMPLE_CELLS)
    self.init_slide_queue(adata, min_prototypes_ratio)

    latent = self._compute_representations_datamodule(None, datamodule, return_representations=True)
    self.swav_head.set_kmeans_prototypes(latent.numpy(force=True))

    self.swav_head._prototypes = self.swav_head._kmeans_prototypes
    del self.swav_head._kmeans_prototypes

    self.fit(
        adata=adata,
        max_epochs=max_epochs,
        accelerator=accelerator,
        num_workers=num_workers,
        lr=lr,
        **fit_kwargs,
    )

fit(adata=None, max_epochs=20, accelerator='cpu', num_workers=None, lr=0.001, min_delta=0.1, patience=3, callbacks=None, logger=False, **trainer_kwargs)

Train a Novae model. The training will be stopped by early stopping.

Warn

If you loaded a pretrained model, use novae.Novae.fine_tune instead.

Parameters:

Name Type Description Default
adata AnnData | list[AnnData] | None

An AnnData object, or a list of AnnData objects. Optional if the model was initialized with adata.

None
max_epochs int

Maximum number of training epochs.

20
accelerator str

Accelerator to use. For instance, 'cuda', 'cpu', or 'auto'. See Pytorch Lightning for more details.

'cpu'
num_workers int | None

Number of workers for the dataloader.

None
lr float

Model learning rate.

0.001
min_delta float

Minimum change in the monitored quantity to qualify as an improvement (early stopping).

0.1
patience int

Number of epochs with no improvement after which training will be stopped (early stopping).

3
callbacks list[Callback] | None

Optional list of Pytorch lightning callbacks.

None
logger Logger | list[Logger] | bool

The pytorch lightning logger.

False
**trainer_kwargs int

Optional kwargs for the Pytorch Lightning Trainer class.

{}
Source code in novae/model.py
def fit(
    self,
    adata: AnnData | list[AnnData] | None = None,
    max_epochs: int = 20,
    accelerator: str = "cpu",
    num_workers: int | None = None,
    lr: float = 1e-3,
    min_delta: float = 0.1,
    patience: int = 3,
    callbacks: list[Callback] | None = None,
    logger: Logger | list[Logger] | bool = False,
    **trainer_kwargs: int,
):
    """Train a Novae model. The training will be stopped by early stopping.

    !!! warn
        If you loaded a pretrained model, use [novae.Novae.fine_tune][] instead.

    Args:
        adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
        max_epochs: Maximum number of training epochs.
        accelerator: Accelerator to use. For instance, `'cuda'`, `'cpu'`, or `'auto'`. See Pytorch Lightning for more details.
        num_workers: Number of workers for the dataloader.
        lr: Model learning rate.
        min_delta: Minimum change in the monitored quantity to qualify as an improvement (early stopping).
        patience: Number of epochs with no improvement after which training will be stopped (early stopping).
        callbacks: Optional list of Pytorch lightning callbacks.
        logger: The pytorch lightning logger.
        **trainer_kwargs: Optional kwargs for the Pytorch Lightning `Trainer` class.
    """
    self.mode.fit()

    if adata is not None:
        self.adatas, _ = utils.prepare_adatas(adata, var_names=self.cell_embedder.gene_names)

    ### Misc
    self._lr = lr
    self.swav_head.reset_clustering()  # ensure we don't re-use old clusters
    self._parse_hardware_args(accelerator, num_workers)
    self._datamodule = self._init_datamodule()

    _train(
        self,
        self.datamodule,
        accelerator,
        max_epochs=max_epochs,
        patience=patience,
        min_delta=min_delta,
        callbacks=callbacks,
        logger=logger,
        **trainer_kwargs,
    )

    self.mode.trained = True

from_pretrained(model_name_or_path, **kwargs) classmethod

Load a pretrained Novae model from HuggingFace Hub.

Available model names

See here the available Novae model names.

Parameters:

Name Type Description Default
model_name_or_path str

Name of the model, e.g. "MICS-Lab/novae-1-medium", or path to the local model.

required
**kwargs int

Optional kwargs for Hugging Face from_pretrained method.

{}

Returns:

Type Description
Novae

A pretrained Novae model.

Source code in novae/model.py
@classmethod
def from_pretrained(self, model_name_or_path: str, **kwargs: int) -> "Novae":
    """Load a pretrained `Novae` model from HuggingFace Hub.

    !!! info "Available model names"
        See [here](https://huggingface.co/collections/MICS-Lab/novae-669cdf1754729d168a69f6bd) the available Novae model names.

    Args:
        model_name_or_path: Name of the model, e.g. `"MICS-Lab/novae-1-medium"`, or path to the local model.
        **kwargs: Optional kwargs for Hugging Face [`from_pretrained`](https://huggingface.co/docs/huggingface_hub/v0.24.0/en/package_reference/mixins#huggingface_hub.ModelHubMixin.from_pretrained) method.

    Returns:
        A pretrained `Novae` model.
    """
    model = super().from_pretrained(model_name_or_path, **kwargs)

    model.mode.from_pretrained()
    model._model_name = model_name_or_path
    model.cell_embedder.embedding.weight.requires_grad_(False)

    return model

init_slide_queue(adata, min_prototypes_ratio)

Initialize the slide-queue for the SwAV head. This can be used before training (fit or fine_tune) when there are potentially slide-specific or condition-specific prototypes.

Parameters:

Name Type Description Default
adata AnnData | list[AnnData] | None

An AnnData object, or a list of AnnData objects. Optional if the model was initialized with adata.

required
min_prototypes_ratio float

Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.

required
Source code in novae/model.py
def init_slide_queue(self, adata: AnnData | list[AnnData] | None, min_prototypes_ratio: float) -> None:
    """
    Initialize the slide-queue for the SwAV head.
    This can be used before training (`fit` or `fine_tune`) when there are potentially slide-specific or condition-specific prototypes.

    Args:
        adata: An `AnnData` object, or a list of `AnnData` objects. Optional if the model was initialized with `adata`.
        min_prototypes_ratio: Minimum ratio of prototypes to be used for each slide. Use a low value to get highly slide-specific or condition-specific prototypes.
    """
    self.hparams.min_prototypes_ratio = min_prototypes_ratio

    if adata is None or min_prototypes_ratio == 1:
        return

    slide_ids = list(utils.unique_obs(adata, Keys.SLIDE_ID))
    if len(slide_ids) > 1:
        self.swav_head.set_min_prototypes(min_prototypes_ratio)
        self.swav_head.init_queue(slide_ids)

plot_domains_hierarchy(max_level=10, hline_level=None, leaf_font_size=8, **kwargs)

Plot the domains hierarchy as a dendogram.

Parameters:

Name Type Description Default
max_level int

Maximum level to be plot.

10
hline_level int | list[int] | None

If not None, a red line will ne drawn at this/these level(s).

None
leaf_font_size int

The font size for the leaf labels.

8
Source code in novae/model.py
def plot_domains_hierarchy(
    self,
    max_level: int = 10,
    hline_level: int | list[int] | None = None,
    leaf_font_size: int = 8,
    **kwargs,
):
    """Plot the domains hierarchy as a dendogram.

    Args:
        max_level: Maximum level to be plot.
        hline_level: If not `None`, a red line will ne drawn at this/these level(s).
        leaf_font_size: The font size for the leaf labels.
    """
    plot._domains_hierarchy(
        self.swav_head.clustering,
        max_level=max_level,
        hline_level=hline_level,
        leaf_font_size=leaf_font_size,
        **kwargs,
    )

plot_prototype_weights(**kwargs)

Plot the weights of the prototypes per slide.

Source code in novae/model.py
def plot_prototype_weights(self, **kwargs: int):
    """Plot the weights of the prototypes per slide."""

    assert (
        self.swav_head.queue is not None
    ), "Swav queue not initialized. Initialize it with `model.init_slide_queue(...)`, then train or fine-tune the model."

    weights, thresholds = self.swav_head.queue_weights()
    weights, thresholds = weights.numpy(force=True), thresholds.numpy(force=True)

    where_enough_prototypes = (weights >= thresholds).sum(1) >= self.swav_head.min_prototypes
    for i in np.where(where_enough_prototypes)[0]:
        weights[i, weights[i] < thresholds] = 0
    for i in np.where(~where_enough_prototypes)[0]:
        indices_0 = np.argsort(weights[i])[: -self.swav_head.min_prototypes]
        weights[i, indices_0] = 0

    plot._weights_clustermap(weights, self.adatas, list(self.swav_head.slide_label_encoder.keys()), **kwargs)

save_pretrained(save_directory, *, repo_id=None, push_to_hub=False, **kwargs)

Save a pretrained Novae model to a directory.

Parameters:

Name Type Description Default
save_directory str

Path to the directory where the model will be saved.

required
**kwargs int

Do not use. These are used to push a new model on HuggingFace Hub.

{}
Source code in novae/model.py
def save_pretrained(
    self,
    save_directory: str,
    *,
    repo_id: str | None = None,
    push_to_hub: bool = False,
    **kwargs: int,
):
    """Save a pretrained `Novae` model to a directory.

    Args:
        save_directory: Path to the directory where the model will be saved.
        **kwargs: Do not use. These are used to push a new model on HuggingFace Hub.
    """

    super().save_pretrained(
        save_directory,
        config=dict(self.hparams),
        repo_id=repo_id,
        push_to_hub=push_to_hub,
        **kwargs,
    )