Modules
novae.module.AttentionAggregation
Bases: Aggregation
, LightningModule
Aggregate the node embeddings using attention.
Source code in novae/module/aggregate.py
__init__(output_size)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_size
|
int
|
Size of the representations, i.e. the encoder outputs ( |
required |
Source code in novae/module/aggregate.py
forward(x, index=None, ptr=None, dim_size=None, dim=-2)
Performs attention aggragation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The nodes embeddings representing |
required |
index
|
Tensor | None
|
The Pytorch Geometric index used to know to which graph each node belongs. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of shape |
Source code in novae/module/aggregate.py
novae.module.CellEmbedder
Bases: LightningModule
Convert a cell into an embedding using a gene embedding matrix.
Source code in novae/module/embed.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
__init__(gene_names, embedding_size, embedding=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gene_names
|
list[str] | dict[str, int]
|
Name of the genes to be used in the embedding, or dictionnary of index to name. |
required |
embedding_size
|
int | None
|
Size of the embeddings of the genes ( |
required |
embedding
|
Tensor | None
|
Optional pre-trained embedding matrix. If provided, |
None
|
Source code in novae/module/embed.py
forward(data)
Embed the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Data
|
A Pytorch Geometric |
required |
Returns:
Name | Type | Description |
---|---|---|
data |
Data
|
A Pytorch Geometric |
Source code in novae/module/embed.py
from_scgpt_embedding(scgpt_model_dir)
classmethod
Initialize the CellEmbedder from a scGPT pretrained model directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scgpt_model_dir
|
str
|
Path to a directory containing a scGPT checkpoint, i.e. a |
required |
Returns:
Type | Description |
---|---|
CellEmbedder
|
A CellEmbedder instance. |
Source code in novae/module/embed.py
genes_to_indices(gene_names, as_torch=True)
Convert gene names to their corresponding indices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gene_names
|
Index | list[str]
|
Names of the gene names to convert. |
required |
as_torch
|
bool
|
Whether to return a |
True
|
Returns:
Type | Description |
---|---|
Tensor | ndarray
|
A tensor or array of gene indices. |
Source code in novae/module/embed.py
pca_init(adatas)
Initialize the Noave embeddings with PCA components.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adatas
|
list[AnnData] | None
|
A list of |
required |
Source code in novae/module/embed.py
novae.module.GraphAugmentation
Bases: LightningModule
Perform graph augmentation for Novae. It adds noise to the data and keeps a subset of the genes.
Source code in novae/module/augment.py
__init__(panel_subset_size, background_noise_lambda, sensitivity_noise_std)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
panel_subset_size
|
float
|
Ratio of genes kept from the panel during augmentation. |
required |
background_noise_lambda
|
float
|
Parameter of the exponential distribution for the noise augmentation. |
required |
sensitivity_noise_std
|
float
|
Standard deviation for the multiplicative for for the noise augmentation. |
required |
Source code in novae/module/augment.py
forward(data)
Perform data augmentation (noise
and panel_subset
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Batch
|
A Pytorch Geometric |
required |
Returns:
Type | Description |
---|---|
Batch
|
The augmented |
Source code in novae/module/augment.py
noise(data)
Add noise (inplace) to the data as detailed in the article.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Batch
|
A Pytorch Geometric |
required |
Source code in novae/module/augment.py
panel_subset(data)
Keep a ratio of panel_subset_size
of the input genes (inplace operation).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Batch
|
A Pytorch Geometric |
required |
Source code in novae/module/augment.py
novae.module.GraphEncoder
Bases: LightningModule
Graph encoder of Novae. It uses a graph attention network.
Source code in novae/module/encode.py
__init__(embedding_size, hidden_size, num_layers, output_size, heads)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding_size
|
int
|
Size of the embeddings of the genes ( |
required |
hidden_size
|
int
|
The size of the hidden layers in the GAT. |
required |
num_layers
|
int
|
The number of layers in the GAT. |
required |
output_size
|
int
|
Size of the representations, i.e. the encoder outputs ( |
required |
heads
|
int
|
The number of attention heads in the GAT. |
required |
Source code in novae/module/encode.py
forward(data)
Encode the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Batch
|
A Pytorch Geometric |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of shape |
Source code in novae/module/encode.py
novae.module.SwavHead
Bases: LightningModule
Source code in novae/module/swav.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
__init__(mode, output_size, num_prototypes, temperature)
SwavHead module, adapted from the paper "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments".
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_size
|
int
|
Size of the representations, i.e. the encoder outputs ( |
required |
num_prototypes
|
int
|
Number of prototypes ( |
required |
temperature
|
float
|
Temperature used in the cross-entropy loss. |
required |
Source code in novae/module/swav.py
forward(z1, z2, slide_id)
Compute the SwAV loss for two batches of neighborhood graph views.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
z1
|
Tensor
|
Batch containing graphs representations |
required |
z2
|
Tensor
|
Batch containing graphs representations |
required |
Returns:
Type | Description |
---|---|
tuple[Tensor, Tensor]
|
The SwAV loss, and the mean entropy normalized (for monitoring). |
Source code in novae/module/swav.py
hierarchical_clustering()
Perform hierarchical clustering on the prototypes. Saves the full tree of clusters.
Source code in novae/module/swav.py
init_queue(slide_ids)
Initialize the slide-queue.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
slide_ids
|
list[str]
|
A list of slide ids. |
required |
Source code in novae/module/swav.py
map_leaves_domains(series, level)
Map leaves to the parent domain from the corresponding level of the hierarchical tree.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series
|
Series
|
Leaves classes |
required |
level
|
int
|
Level of the hierarchical clustering tree (or, number of clusters) |
required |
Returns:
Type | Description |
---|---|
Series
|
Series of classes. |
Source code in novae/module/swav.py
projection(z)
Compute the projection of the (normalized) representations over the prototypes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
z
|
Tensor
|
The representations of one batch, of size |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The projections of size |
Source code in novae/module/swav.py
prototype_ilocs(projections, slide_id=None)
Get the indices of the prototypes to use for the current slide.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
projections
|
Tensor
|
Projections of the (normalized) representations over the prototypes, of size |
required |
slide_id
|
str | None
|
ID of the slide, or |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The indices of the prototypes to use, or an |
Source code in novae/module/swav.py
queue_weights()
Convert the queue to a matrix of prototype weight per slide.
Returns:
Type | Description |
---|---|
tuple[Tensor, Tensor]
|
A tensor of shape |
Source code in novae/module/swav.py
sinkhorn(projections)
Apply the Sinkhorn-Knopp algorithm to the projections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
projections
|
Tensor
|
Projections of the (normalized) representations over the prototypes, of size |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The soft codes from the Sinkhorn-Knopp algorithm, with shape |