scyan.Scyan
### Usage example
import scyan
adata, table = scyan.data.load("aml")
model = scyan.Scyan(adata, table)
model.fit()
model.predict()
Notations
\(N\) denotes the number of cells, \(P\) the number of populations, \(M\) the number of markers, and \(B\) the size of a mini-batch (not the number of biological batches). You can find other definitions in the article.
Bases: LightningModule
Scyan, a.k.a Single-cell Cytometry Annotation Network. It is a wrapper to the ScyanModule that contains the core logic (the loss implementation, the forward function, ...). While ScyanModule works on tensors, this class works directly on AnnData objects. To read more about the initialization arguments, read init().
Attributes:
Name | Type | Description |
---|---|---|
adata |
AnnData
|
The provided |
table |
Dataframe
|
The knowledge table of \(P\) populations x \(M\) markers. |
n_pops |
int
|
Number of populations considered, i.e. \(P\) |
hparams |
object
|
Model hyperparameters |
module |
ScyanModule
|
A ScyanModule object |
Source code in scyan/model.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
|
__init__(adata, table, continuous_covariates=None, categorical_covariates=None, continuum_markers=None, hidden_size=16, n_hidden_layers=6, n_layers=7, prior_std=0.3, warm_up=(0.35, 4), lr=0.0005, batch_size=8192, temperature=0.5, modulo_temp=3, max_samples=200000, batch_key=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata |
AnnData
|
|
required |
table |
DataFrame
|
Dataframe of shape \((P, M)\) representing the biological knowledge about markers and populations. The columns names corresponds to marker that must be in |
required |
continuous_covariates |
Optional[List[str]]
|
Optional list of keys in |
None
|
categorical_covariates |
Optional[List[str]]
|
Optional list of keys in |
None
|
continuum_markers |
Optional[List[str]]
|
Optional list of markers from the table whose expression is a continuum (for instance, it is often the case for PD1/PDL1). We advise to use it carefully, and keep values of -1 and 1 in the table. |
None
|
hidden_size |
int
|
Hidden size of the MLP ( |
16
|
n_hidden_layers |
int
|
Number of hidden layers in the MLP. |
6
|
n_layers |
int
|
Number of coupling layers. |
7
|
prior_std |
float
|
Standard deviation \(\sigma\) of the cell-specific random variable \(H\). |
0.3
|
warm_up |
Optional[tuple[float, int]]
|
If not |
(0.35, 4)
|
lr |
float
|
Model learning rate. |
0.0005
|
batch_size |
int
|
Model batch size. |
8192
|
temperature |
float
|
Temperature to favor small populations. |
0.5
|
modulo_temp |
int
|
At which frequency temperature has to be applied. |
3
|
max_samples |
Optional[int]
|
Maximum number of samples per epoch. |
200000
|
batch_key |
Optional[str]
|
Key in |
None
|
Source code in scyan/model.py
fit(max_epochs=100, accelerator='cpu', min_delta=1, patience=4, num_workers=0, log_every_n_steps=10, callbacks=None, logger=False, enable_checkpointing=False, trainer=None, **trainer_args)
Train the Scyan
model. On interactive Python (e.g., Jupyter Notebooks), training can be interrupted at any time without crashing.
Note
The Pytorch Lightning training is used under the hood (see the corresponding API here)
Note
Depending on your machine, you may have a warning about some performance issues. You can simply set num_workers
to the number indicated by the warning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_epochs |
int
|
Maximum number of epochs. |
100
|
accelerator |
str
|
Accelerator used during training. See Pytorch Lightning docs. |
'cpu'
|
min_delta |
float
|
min_delta parameters used for |
1
|
patience |
int
|
Number of epochs with no loss improvement before stopping training. |
4
|
num_workers |
int
|
Pytorch DataLoader |
0
|
log_every_n_steps |
int
|
How often to log within steps (see Pytorch Lightning Trainer API). |
10
|
callbacks |
Optional[List[Callback]]
|
Optional list of Pytorch Lightning callbacks (see their Trainer API). They will be added to our EarlyStopping callback. |
None
|
logger |
Union[bool, Logger]
|
Pytorch Lightning logger argument (see their Trainer API). |
False
|
enable_checkpointing |
bool
|
If |
False
|
trainer |
Optional[Trainer]
|
Optional Pytorch Lightning Trainer. Warning: it will replace the default Trainer, and every other argument will be unused. |
None
|
**trainer_args |
int
|
Optional kwargs to provide to the |
{}
|
Returns:
Type | Description |
---|---|
Scyan
|
The trained model itself. |
Source code in scyan/model.py
predict(key_added='scyan_pop', add_levels=True, log_prob_th=-50)
Model population predictions, i.e. one population is assigned for each cell. Predictions are saved in adata.obs.scyan_pop
by default.
Note
Some cells may not be annotated, if their log probability is lower than log_prob_th
for all populations. Then, the predicted label will be np.nan
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key_added |
Optional[str]
|
Column name used to save the predictions in |
'scyan_pop'
|
add_levels |
bool
|
If |
True
|
log_prob_th |
float
|
If the log-probability of the most probable population for one cell is below this threshold, this cell will not be annotated ( |
-50
|
Returns:
Type | Description |
---|---|
Series
|
Population predictions (pandas |
Source code in scyan/model.py
predict_proba()
Soft predictions (i.e. an array of probability per population) for each cell.
Returns:
Type | Description |
---|---|
DataFrame
|
Dataframe of shape |
Source code in scyan/model.py
refine_fit(patience=10, min_delta=0.2, key='scyan_pop', **fit_kwargs)
Improve training (and also batch effect correction) by filling the NaN values in the table and continue fitting Scyan. Afterwards, you can correct batch effect with batch_effect_correction().
Info
Run this function only to improve batch effect correction (it is not designed to improve annotation).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
patience |
int
|
Number of epochs with no loss improvement before stopping training. |
10
|
min_delta |
float
|
min_delta parameters used for |
0.2
|
key |
str
|
Column name used to save the predictions in |
'scyan_pop'
|
Source code in scyan/model.py
batch_effect_correction(batch_ref=None)
Correct batch effect by going into the latent space, setting the reference covariate to all cells, and then reversing the flow.
Info
To have a better batch effect correction, we advise to run refine_fit() first.
Warning
As we standardised data for training, the resulting tensor is standardised too. You can save the tensor as a numpy layer of adata
and use scyan.preprocess.unscale to unscale it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_ref |
Optional[str]
|
Name of the batch that will be considered as the reference. By default, it chooses the batch with the highest number of cells. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The corrected marker expressions in the original space (a Tensor of shape \(N\) cells x \(M\) markers). |
Source code in scyan/model.py
sample(n_samples, covariates_sample=None, pop=None, return_z=False)
Sampling cells by sampling from the prior distribution and going into the normalizing flow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_samples |
int
|
Number of cells to sample. |
required |
covariates_sample |
Optional[Tensor]
|
Optional tensor of covariates. If not provided: if the model was trained for batch correction then the reference covariates are repeated, else we sample from all the covariates. |
None
|
pop |
Union[str, List[str], int, Tensor, None]
|
Optional population to sample from (by default, sample from all populations). If |
None
|
return_z |
bool
|
Whether to return the population |
False
|
Returns:
Type | Description |
---|---|
Tuple[Tensor, Tensor]
|
Sampled cells expressions and, if |
Source code in scyan/model.py
pop_names: pd.Index
property
Name of the populations considered in the knowledge table
var_names: pd.Index
property
Name of the markers considered in the knowledge table
pops(level=None, parent_of=None, children_of=None)
Get the name of the populations that match a given contraint (only available if a hierarchical populations are provided, see this tutorial). If level
is provided, returns all populations at this level. If parent_of
, returns the parent of the given pop. If children_of
, returns the children of the given pop.
Note
If you want to get the names of the leaves populations, you can simply use model.pop_names
, which is equivalent to model.pops(level=0)
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
level |
Union[str, int, None]
|
If |
None
|
parent_of |
Optional[str]
|
name of the population of which we want to get the parent in the tree. |
None
|
children_of |
Optional[str]
|
name of the population of which we want to get the children populations in the tree. |
None
|
Returns:
Type | Description |
---|---|
Union[List, str]
|
List of all populations that match the contraint, or one name if |
Source code in scyan/model.py
level_names
property
All population hierarchical level names, if existing.
save(path)
Saves the Scyan model state_dict
at the provided path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str
|
Path where the parameters will be saved. For instance, |
required |
load(path)
Loads the Scyan model that was saved at the provided path. Note that the model has to be initialized with the same arguments.
Example
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str
|
Path where the parameters were saved, i.e. the argument of |
required |